Monday, November 24, 2008

Collider Conundrum

A Duke physicist is helping sort out a scientific mystery in the debris of some high energy subatomic particle smashups at the Fermi National Accelerator Laboratory. An unexpectedly large number of muons are appearing in ways that can't be explained by known physics.

The excess muons, which are heavier versions of electrons, could be evidence for some form of mysterious dark matter, acknowledges associate physics professor Mark Kruse.

They could even be decay products connected to the Higgs boson, the so-called "God particle" which is being sought at Fermilab, the world's most powerful particle collider, and its even more powerful successor in Europe, the Large Hadron Collider (LHC) at CERN.

Kruse, who co-leads of Higgs investigations at Fermilab's CDF detector group and will also work at CERN, suspects the anomaly will probably turn out to be nothing special. But "I think it's exciting either way," he says. "It's sort of a warning that we should be prepared for new physics to show up in ways that we're not necessarily expecting."

Fermilab and the LHC are both designed to smash subatomic protons together at energies high enough to create particles that no longer exist or have not been identified in today's universe. The Higgs, for instance, is supposed to instill mass in matter but only shows up today as an undetectable force field.

Another goal is to confirm or overrule the tenants of the Standard Model of elementary particles and forces, which was devised by the world's physics community and so far remains unchallenged.

Under the Standard Model, muons can be among the decay products of b quarks and antiquarks produced when protons and antiprotons collide at Fermilab. But twice the expected numbers have been found to originate outside the collision region in the CDF detector.

"Fifty percent can be explained by known processes, but there's still a huge number than can't," Kruse says. "We're talking about tens of thousands of events." And some of those muons are also being produced as multiple groups. "There's nothing in the Standard Model that can explain that," he adds.

A list of scientists almost four pages long signed onto the 68 page scientific report describing the "multi-muon events" at Fermilab. But another third of the CDF collaboration declined to add their names. "They thought more crosschecks had to be done," Kruse says.

He says he helped "shepherd" the completion of that study http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.5357v2.pdf , and was involved in another shorter one http://arxiv.org/pdf/0810.5730v1 speculating on the possible implications.

EPA facility measures air pollution with scale models

Becca Writes:

Last week I visited the NOAA / EPA Fluid Modeling Facility with my Focus Program group. The purpose of this facility is to better understand atmospheric dispersion of pollutants. For that reason, the scientists at the FMF build huge scale models of buildings, towns, and cities to evaluate atmospheric dispersion under very specific conditions. They place a model in a large wind tunnel machine, a device that simulates air currents in the atmosphere. Theatrical smoke is emitted at a certain point, and its dispersion through the wind tunnel is measured and analyzed.

We observed an experiment designed to test how air pollutants disperse from highways, specifically, a highway outside Las Vegas that cuts underneath a railroad track. To better demonstrate the flow of air, the lights were turned off and a laser was pointed at the point of release. This allowed us to see the many swirls and eddies of the dispersing pollution.



Interestingly, by adding a high-rise building to the immediate left of the highway, the air flow dynamic changed and pollutants were stirred up much more. One can obviously see the benefits of this type of modeling in determining the dispersion of pollutants.

Thursday, November 20, 2008

A Very Open Universe


Stuart Kauffman, a philosophy major who became a physician, biochemist and a well known biology and complexity theorist, told a Duke Physics Building audience on Nov. 18 that the universe's own inherent uncertainties make it an unpredictable, "lawless" place.

In a talk sponsored by Duke's Center for Theoretical and Mathematical Sciences, the director of the University of Calgary's Institute for Biocomplexity and Informatics said comforting notions about the predictability of Nature as outlined by luminaries like Isaac Newton and Pierre-Simon Laplace were first derailed by the mathematical uncertainties of quantum mechanics.

Since then, he said in a free-ranging tour of his thought processes, it has only become more apparent that seemingly robust scientific dogma may only apply part of the time. For example, while the beautiful double helix symmetry of DNA is generally considered the fundamental agent of reproduction, scientists are finding that life can also spring from other kinds of autocatalytic molecular interactions.

Moreover, since scientists estimate there are more kinds of conceivable proteins than there are particles of matter in the cosmos, what's possible to create may be vastly underestimated, he added. "The universe will never make all possible molecules, organisms or species," he said. "So most complex things will never exist."

While Newton's equations can grossly describe the movements of a billiard ball, some elements of its path are also indescribably chaotic, he said. Similarly, the tenants of Evolution cannot predict that the lungs of a primitive lungfish would evolve into swim bladders of other fish species, or that hummingbird beaks would co-evolve with flowers to facilitate pollination.

In the engineering world, Kauffman also described how the most promising technologies may also be borrowed or superseded in unpredictable ways. Examples include how fiberoptic cables have been partially replaced by wireless signal trafficking, or how technicians deduced that engine blocks themselves should be used as chassis in tractors.

Thursday, November 13, 2008

Going Beyond a Multinational

"Connecting those who need it most" is the goal of a new innovative firm called Inveneo. Inveneo is a pioneer in a new breed of organizations which utilize their technical superiority to widen the reaches of computer technology and take it to rural areas around the world. On November 11, Jeff Wishnie, the Chief Technology Officer of Inveneo, delivered a stimulating lecture highlighting the pathbreaking achievements of Inveneo within just a few years of formation.













"The mission is to get the tools of ICT-Information and Communication Technology to the people and organizations who need them the most, those in remote and rural communities in the developing world," Jeff said. The non-profit organization believes that ICTs are the premier solutions in offering rural healthcare and relief, better finance and market opportunities and more well rounded education. Inveneo has been successful in employing ICTs in the predominantly rural areas of the world, including Rwanda, Uganda, Sierra Leone and Nigeria.

Over the years, Duke students have been actively connected with Inveneo. Duke Smart Home and Engineers Without Borders (EWB) students installed Inveneo systems and computers at the RASD (Rural Agency for Sustainable Development) resource center in Nkokonjeru, Uganda. "It was so gratifying to see people – many of whom had never been on the internet before - at the computers," said Will Patrick of EWB. "We trained RASD volunteers how to maintain it, and in its first month, the café brought in more than 200,000 shillings. It's not much, but it was twice as much as the bills to the phone company."



Jeff said that the task of installing computers and the Internet, which appears to be really simple in a country like the USA, involves a complex procedure in the underdeveloped areas. This is due to the extreme social, infrastructural and technological challenges posed in these places. "Even government healthcare hospitals do not have generators. If they do have them, most don't work or don't have fuel", Jeff said, recounting his first-hand experiences working in such harsh conditions. "Thus,"he adds, "there needs to be a major focus on building a sustainable design, which should be usable, affordable, supportable, resistant, resilient and low power consuming." The engineers and software designers at Inveneo have incorporated all these design considerations into their systems, which has enabled them to live up to their mission of "Connecting those who need it the most."